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Abstract

Smallholder agricultural production depends heavily on environmental production conditions that

are largely exogenously determined. Yet, few data sets collect necessary, detailed information on

environmental production conditions. This oversight raises the spectre of likely omitted variables

bias because farmers’ input choices typically respond in part to environmental conditions. Moreover,

because environmental production conditions are rarely symmetrically distributed, the omission also

generally leads to upward bias in estimated technical inefficiency and to biased estimates of the

correlates of estimated technical inefficiency as well. Using panel data from 464 traditional rice plots

in Côte d’Ivoire, we show that controlling for heterogeneous environmental production conditions

significantly changes inferences, perhaps especially with respect to smallholder rice farmers’

estimated technical inefficiency.
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1. Introduction

In his classic ‘‘poor but efficient’’ hypothesis, Schultz (1964) argued that traditional

farmers, given a long enough period of time to learn their production processes, will
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identify their respective optimal input and output bundles. Based on this strong belief in

the managerial efficiency of smallholders, Schultz advocated an agricultural development

policy based on expanding smallholder production frontiers as the most cost-effective

means to increase the welfare of low-income farmers around the world. This vision helped

guide the Green Revolution and much ongoing research on improving crop production

technologies in the developing world.

Yet, countless empirical studies have refuted Schultz’s claim, finding widespread

technical inefficiency among smallholder producers and consequently recommending that

policy makers reallocate scarce resources toward redressing apparent obstacles to farmer

technical efficiency through improved extension work, farmer education, land tenure

reforms, etc. Today, rapid advances in biotechnology have led to major increases in

potential crop yields and crop tolerance and resistance to drought, pests, and disease—

problems which reduce the productivity potential for major crops in developing countries

(Conway, 1997). With rapid globalization of major seed and agrochemical industries into

developing countries, it is becoming increasingly important for farmers to become more

efficient in their ability to access and use available technologies. However, public sector

investments in increasing the productivity of farmers in these countries require accurate

assessment of the efficiency of farmers and identification of the sources of inefficiencies in

order to develop policy and institutional innovations to minimize extant inefficiencies.

A significant subset of the production frontier estimation literature focuses on small-

holder agriculture (Greene, 1997; Coelli, 1995; Bravo-Ureta and Pinheiro, 1993; Battese,

1992; Ali and Byerlee, 1991; all provide surveys of this literature). Due mainly to data

limitations, however, few such studies control for interfarm heterogeneity in environ-

mental production conditions. Given the extraordinary dependence of smallholder farmers

on the underlying agroecology, we conjecture that this omission could partially explain the

inconsistency between the mass of empirical results that find considerable smallholder

technical inefficiency and the elegant logic of Schultz’s longstanding claim.1

This paper uses a rich panel data set of rice farmers in the West African nation of Côte

d’Ivoire to reconsider inference with respect to technical inefficiency when one controls

carefully for environmental production conditions. In particular, we show that the neglect

of interfarm heterogeneity in environmental conditions such as pest and weed infestation,

plant disease, and rainfall leads not only to obvious omitted variables bias in the estimated

parameters of the production frontier, but also to significantly inflated estimates of plot-

specific technical inefficiency and to bias in estimates of the correlates of technical

inefficiency.

The remainder of the paper is organized as follows. Section 2 briefly reviews the

inferential impacts of omitting environmental conditions when estimating a production

frontier and conducting inference about technical inefficiency. Sections 3 and 4 describe

the data and econometric methodology we use, respectively. Section 5 contains our

empirical results and Section 6 concludes.

1 Our concern harkens back to Hall and Winsten’s (1959) response to Farrell’s (1957) seminal work on

efficiency measurement, wherein they questioned whether comparisons of output across different production

conditions really provide useful information on managerial performance.
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2. Environmental production conditions

There are industries, such as banking and semiconductors, in which firms have

considerable, or even complete, control over their physical production environment. This

is not the case, however, in traditional smallholder agriculture, which relies strongly upon

environmental conditions that vary markedly over time and space. The environment

conditions the results of farmers’ production decisions. Otherwise identical producers—

same technologies, same abilities—will produce different quantities of grain if faced with

different rainfall, plant disease, pest or weed infestation, or other environmental production

conditions.2 Moreover, farmers will adjust commonly measured inputs, such as labor, land,

and mineral fertilizer, in response to such environmental conditions. These fundamental

features of smallholder agriculture should inform the estimation of production frontiers. In

practice, however, few farm production data sets contain detailed, farm- or plot-specific

information on the environmental conditions facing producers. Lack of data forces

analysts to omit potentially relevant environmental variables, with at least three con-

sequences.

Suppose farmer i produces output, Yi, using the productive inputs, Xi, in the presence of

environmental conditions, Wi, adjusted for the farmer’s technical inefficiency, uiz 0.

Output is assumed to be strictly monotonically increasing in both productive inputs and

environmental conditions.3 This relationship may be estimated as either a nonstochastic

production frontier, Yi= f(Xi, Wi)� ui, or, given mean zero, symmetric sampling and

measurement error, vi, as a stochastic production frontier, Yi = f(Xi, Wi)� ui + vi. The

production unit achieves technical efficiency if and only if ui = 0. However, the relationship

typically estimated in the literature, Yi = g(Xi,Wi*)� ui* + vi*, whereWi*pWi, omits some or

all of the elements of Wi; call these omitted elements W̃i. As any undergraduate

econometrics text explains, this will lead to biased and inconsistent estimates of the

parameters of f(�) if W̃i is correlated with both X and Y. This omitted relevant variables

bias is the first of the three problems that concern us.

The second problem arises from the potentially asymmetric distribution of W̃i on

the technical inefficiency parameter estimate, ui*. If there is variation in sample in W̃i, then

a nonstochastic production frontier estimated without controlling for W̃i will necessarily

generate ui*z ui (recall that uiz 0) for any i= 1,. . ., n for which W̃i�maxi{W̃i} < 0. This

problem exists even when estimating a stochastic production frontier, albeit under slightly

less general conditions. Suppose that W̃i has distribution WiuW(W̃i) and that vi has

distribution UiuU(vi). The effects of W̃i on Yi that are uncorrelated with Xi, and thereby

picked up as omitted relevant variables bias, will then be absorbed in the composite error

term, vi*� ui*. A necessary, but not sufficient, condition for the totality of the effect of W̃i

2 It is also likely that environmental conditions influence input allocation of land, labor, fertilizer, etc. In this

paper, for the sake of degrees of freedom in estimation, we maintain the hypothesis of separability between

traditional and natural inputs. An obvious extension of this work would be to relax this assumption.
3 In this section, we assume that W represents states of nature ordered from worst to best, hence the

monotonicity of Y in W. In practice, however, such an ordering may require a nonmonotonic transform of the raw,

underlying data since moderate measures may be optimal. In the empirical section to follow, we work with

polynomial functions of the raw data.
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to be captured by the statistical residual vi*, and not to affect the technical inefficiency

parameter ui*, is that the Wi and Ui distributions differ from one another only by

location and scale parameters. In general, Wi can be represented as a mixture of two

distributions, Ci and Ui, the latter possibly transformed by a location parameter, a, and
a scale parameter, b, or both, such that W(W̃i) = kC(W̃i)+(1� k)U(a + bW̃i), where

ka[0,1]. If k > 0, then ui* will capture part of the effect of the omitted environmental

variables because of the deviation from location and scale differences introduced

through Ci. If Wi is asymmetric and Ui is symmetric (Ui is usually assumed to be

normal), then it must be the case that k>0 since there is more than a location-scale

difference between the two distributions. Therefore, under the standard assumptions of

symmetrically distributed statistical error and asymmetrically distributed technical

inefficiency, ui* is an upwardly biased and inconsistent estimator of ui because

E[ui*]>ui for some i.

The third problem arises with respect to identifying the correlates of technical

inefficiency. While knowing the extent of technical inefficiency prevailing in a sector is

useful, it is helpful to know also the potential sources of technical inefficiency so as to

target interventions appropriately and thereby potentially reduce inefficiency. Suppose that

technical inefficiency is related to managerial variables, Zi, up to statistical error, ni, via the
relationship ui = p(Zi) + ni. However, if the technical inefficiency estimates generated by a

model omitting W̃i are biased estimates of ui, then regressing those biased ui* on Zi will

likewise yield biased and inconsistent estimates of the parameters of the relationship of

interest, p(�).
Therefore, omission of environmental production conditions that intuitively affect both

output and inputs subject to farmer control leads to biased estimates of the parameters

describing the production frontier, overstatement of technical inefficiency, and biased

estimates of the correlates of true technical inefficiency. In the remainder of this paper, we

demonstrate these problems in one particular case: rice production in the West African

nation of Côte d’Ivoire during 1993–1995. We estimate the production frontier directly

‘‘rather than the dual cost or profit frontiers’’ for several reasons. First, using observed

market prices in estimating the production behavior of smallholders (most of whose labor,

land, and animal allocation decisions do not involve market transactions) creates many

inferential problems (Barrett, 1997). Second, Zellner et al. (1966) point out that a

production function may be estimated consistently if the farm manager chooses his or

her inputs and output to maximize expected, not actual, profits.

3. Data

The data we use come from the farm management and household survey (FMHS)

fielded by the West Africa Rice Development Association (WARDA). The WARDA-

FMHS tracked 120 randomly selected rice-producing households in Côte d’Ivoire during

1993–1995. Twenty-two survey instruments were administered (at least) annually and are

described in detail in WARDA (1997). Because our interest is in traditional smallholder

rice production of the sort Schultz hypothesized about, we exclude data from a few

atypical mechanized plots in specialized development projects, as well as observations
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with (nonsystematically) missing data, leaving us with an unbalanced panel of 464 rice

plots for estimation.4

The comparative advantage of the WARDA-FMHS data is its inclusion of plot-level

measurements of environmental production conditions, such as pest and weed infestation,

Table 1

Descriptive statistics

Variable Mean Median Std. Dev. Skewness Minimum Maximum

Rice production (kg) 1676.45 1333.08 1399.14 5.9E + 9 * 46.62 10094.02

Land area (ares) 94.10 74.50 80.84 1.5E + 6 * 4.13 710.00

Adult family labor (hours) 470.46 356.50 400.33 1.0E + 8 0.00 2545.50

Adult hired labor (hours) 298.46 232.00 262.14 3.4E + 7 * 0.00 1984.00

Child labor (hours) 408.24 125.00 640.06 6.2E + 8 * 0.00 3662.00

Chemical fertilizers (kg) 17.52 0.00 51.96 5.0E + 5 * 0.00 350.00

Soil erosivity (0 =N, 1 =Y) 0.39 0.00 0.49 0.05 0.00 1.00

Soil fertility (indexeda) 1.77 2.00 0.65 0.07 1.00 3.00

Soil aptitude (indexeda) 1.47 1.00 0.61 0.21 1.00 3.00

Plot slope (%) 4.19 3.00 4.71 238.87 * 0.00 27.00

Pest infestation (indexedb) 2.45 2.00 1.16 4.17 * 1.00 7.00

Weed density (indexedc) 3.10 3.00 0.84 1.18 * 2.00 5.00

Weed height (indexedd) 2.89 3.00 0.97 2.25 * 1.00 5.00

Plant disease (indexedb) 3.44 3.00 2.24 26.98 * 1.00 9.00

Uplands (0 =N, 1 =Y) 0.69 1.00 0.46 � 0.08 0.00 1.00

Hydromorphic fringe (0 =N, 1 =Y) 0.03 0.00 0.17 0.03 * 0.00 1.00

Lowlands (0 =N, 1 =Y) 0.29 0.00 0.45 0.09 0.00 1.00

Rainy days (days) 93.15 80.00 26.45 7767.67 67.00 132.00

Rainfall (cm) 134.45 132.86 15.15 � 432.97 108.83 158.35

Year 1993 (0 =N, 1 =Y) 0.25 0.00 0.43 0.09 0.00 1.00

Year 1994 (0 =N, 1 =Y) 0.38 0.00 0.49 0.06 0.00 1.00

Year 1995 (0 =N, 1 =Y) 0.37 0.00 0.48 0.06 0.00 1.00

Guinean savannah (0 =N, 1 =Y) 0.25 0.00 0.43 0.09 0.00 1.00

Transition zone (0 =N, 1 =Y) 0.36 0.00 0.48 0.06 0.00 1.00

Equatorial forest (0 =N, 1 =Y) 0.39 0.00 0.49 0.05 0.00 1.00

Rice variety (% modern) 50.64 100.00 49.87 � 3012.47 0.00 100.00

Experience (years) 6.04 5.00 3.68 41.98 0.00 22.00

Gender (0 =M, 1 = F) 0.19 0.00 0.39 0.10 0.00 1.00

Age (years) 47.50 48.00 12.35 237.59 20.00 87.00

No education (0 =N, 1 =Y) 0.78 1.00 0.41 � 0.10 0.00 1.00

Elementary education (0 =N, 1 =Y) 0.07 0.00 0.25 0.05 * 0.00 1.00

Secondary education (0 =N, 1 =Y) 0.08 0.00 0.27 0.06 * 0.00 1.00

College or higher (0 =N, 1 =Y) 0.07 0.00 0.26 0.06 * 0.00 1.00

Rice plots (plots) 1.66 1.00 0.83 0.67 1.00 4.00

Total crops (unique crops) 2.72 3.00 1.43 1.06 1.00 6.00

a 1 =Good, 2 = average, 3 = poor.
b 1 = 10–20%, 2 = 21–30%,. . ., 9 = 91–100% of crop.
c 2 = 5–20%, 3 = 21–40%, 4 = 41–60%, 5 = 61–100%.
d 1 = < 50%, 2 = 50–99%, 3 = 100%, 4 = 101–125%, 5=>125% of rice plant height.

* Statistically significant at the 95% confidence level (one-sided z-test).

4 A total of 88 observations are lost due to missing data, 37 observations due to mechanization.
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plant disease, plot slope, and soil quality.5 Sample descriptive statistics are presented in

Table 1 for the relevant variables (land, adult family labor, adult hired labor, child labor,

chemical fertilizer usage, soil erosivity, soil fertility, soil aptitude for rice cropping, pest

infestation, weed density, weed height, plant disease, topographic location, plot slope,

rainy days, rainfall, rice variety, rice cropping experience, gender, age, education, rice

plots, total crops, region, and year). As is evident, there is relatively little use of chemical

fertilizer usage—this is prototypical smallholder, traditional rice cropping—and consid-

erable variation in land and labor use patterns, as well as in environmental production

conditions. Improving land and labor productivity is central to the task of agricultural

development among these farmers.

The previous section pointed out that if environmental production conditions are not

symmetrically distributed, then their omission will lead to upward-biased estimates of plot-

specific technical inefficiency. As reflected in Table 1 and shown graphically for a few

variables in Fig. 1, these environmental variables are asymmetrically distributed, with

statistically significant positive skewness. Therefore, the problems identified in the

previous section appear to be relevant in this data set, affording us an opportunity to

5 Data on pests, weeds, and disease were collected during four different stages of crop growth (vegetative,

reproductive, flowering, and mature) in highly disaggregated form. Crop vulnerability to different stresses varies

significantly across growth stages and specific stresses. In order to conserve degrees of freedom, we use the

maximal value across stages and specific stresses for each category. This therefore captures maximal threat

exposure, although that need not equal maximal impact since different types of weeds, pests, or disease have

different effects. This distinction should be kept in mind. We cannot isolate the effects of specific types of weeds,

pests, disease or the impact of biotic stresses at particular stages of plant growth.

Fig. 1. Empirical distributions of environmental production conditions.
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examine the consequences of the omission of measurable environmental production

conditions.

One might justifiably challenge the exogeneity of what we label environmental

production conditions. Smallholders can influence some of these variables, either within

the season through the application of labor to combat pests, weeds, or disease, or of

fertilizers to ameliorate poor soil quality, or across years, through land improvements to

improve soil quality or reduce plot slope or soil erosivity. Our Wi variables thus

encompass not only truly exogenous variables (e.g., rainfall), but also quasi-fixed

characteristics (e.g., plot slope and soil erosivity) and outcomes that are jointly the

product of exogenous shocks and managerial response (e.g., pest and weed infestation).

As the correlation coefficients reported in Table 2 show, the relationship between the Xi

and Wi variables is generally weak, but nonzero.6 Exploring this relationship is a topic

worthy of separate investigation. For present purposes, however, the nonzero correlation

between Xi and Wi merely serves to underscore the potential omitted variables bias

plaguing studies that omit Wi.

4. Estimation procedures

The empirical production frontier literature generally follows one of two methods. The

preponderance of the published literature follows the stochastic production frontier

approach independently pioneered by Aigner et al. (1977) and Meeusen and van den

Broeck (1977). In this approach, one specifies a priori a functional form for the production

frontier (e.g., Cobb–Douglas or translog) and probability density functions for the

asymmetric technical inefficiency parameter (usually the half-normal or truncated normal)

and the symmetric statistical error parameter (usually the normal). Then, the (log-)

likelihood function may be written out and maximum likelihood used to estimate the

parameters of interest. The second approach uses nonparametric, data envelopment

Table 2

Correlation matrix relating Xit and Wit variables

Variable Land Family labor Hired labor Child labor Fertilizers

Soil erosivity 0.190 0.064 0.037 0.235 � 0.209

Soil fertility 0.051 0.254 � 0.169 0.281 0.232

Soil aptitude 0.193 0.265 0.012 0.227 0.034

Soil slope 0.329 0.445 0.090 0.427 � 0.118

Pest infestation � 0.041 0.007 � 0.180 0.310 0.532

Weed density 0.088 � 0.076 � 0.035 0.189 � 0.018

Weed height 0.220 0.205 � 0.052 0.490 0.224

Plant disease 0.267 0.305 � 0.067 0.508 � 0.062

Rainy days � 0.117 � 0.026 0.114 � 0.452 � 0.303

Rainfall � 0.127 � 0.191 0.049 � 0.390 � 0.175

6 With a sample size of 464, one can reject the null hypothesis of r = 0 at the 5% confidence level for any

ArAz 0.091.
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analysis (DEA) methods to impose monotonicity and concavity properties on the estima-

ted frontier and otherwise make no functional form or distributional assumptions about

the shape of the production frontier. This flexibility comes at the considerable cost, how-

ever, of an assumed absence of measurement or sampling error (Färe et al., 1994).7 We

focus on the former, stochastic parametric approach, but briefly present DEA results as well

simply to demonstrate that our findings are robust to the estimation method employed.

Jondrow et al. (1982) show how to estimate the conditional expectation of the plot-

specific technical efficiency parameter (conditional upon the composed error term, vi� ui)

in stochastic parametric frontier estimation. One problem with this approach, however, is

that the technical inefficiency parameter is assumed to be independently and identically

distributed. This clearly is not the case if we suspect (and find) that the technical

inefficiency parameter is related to variables such as managerial characteristics and

practices that vary across firms.

To combat this potential problem, some studies suggest estimating the production

frontier and the relationship between technical inefficiency and the sources of inefficiency

jointly, rather than in a two-step procedure. Kumbhakar et al. (1991) generalize the

stochastic production frontier model of Aigner et al. by specifying that the distribution of

the technical inefficiency parameter be the positive truncation of a normal distribution with

variable mean Zid, i.e., uifN + (Zid, ru
2), where d is a vector of parameters to be

estimated. Reifschneider and Stevenson (1991) instead propose that ui = Zid + niz 0,

where nifN + (0, rn
2). However, the latter method does not guarantee that uiz 0. Huang

and Liu (1994) take a slightly different approach. They specify nifN(0, rn
2) and

truncate this from below at the variable truncation point, � Zid. Huang and Liu also

allow for interactions between the productive inputs and the managerial variables in the

technical inefficiency relationship.

Other studies have concentrated on the panel data aspects of production frontier

estimation. Pitt and Lee (1981) implement a random effects treatment to estimate a

stochastic production frontier. Cornwell et al. (1990), Kumbhakar (1990, 1991), Battese

and Coelli (1992), and Lee and Schmidt (1993) allow the technical efficiency parameter to

vary across time via time-specific dummy variables or according to a specified functional

form. However, in these models, the technical inefficiency parameter is assumed to follow

the same pattern over time for all firms. Battese and Coelli (1995) generalize the model of

Huang and Liu to allow for panel data, though not explicitly allowing for interactions

between the inputs and managerial variables in the technical inefficiency relationship. This

model allows the technical inefficiency parameter, and hence technical efficiency, to vary

across time in a potentially different, but predictable, manner across firms.

We implement Battese and Coelli’s technical inefficiency effects model for panel data.

In this model, the technical inefficiency parameter is related to a vector of farmer-

specific managerial variables subject to statistical error, so that uit = Zitd + nitz 0, where

7 The output-oriented, variable returns to scale, strong disposability DEA model may be written as:

h*(Xi,YijVRS,SD) =Maxh,z h, subject to hYiV zY, zXVXi, Rizi ¼ 1, and zaR +
N, where i = 1,. . ., N and z is the

activity vector indicating to which plots the ith plot is being compared. The resulting output measure of technical

efficiency is bounded from below at one, hi*z 1, and represents the multiple by which output may be expanded,

holding the input bundle constant, had the ith plot been fully efficient.
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nitfN(0, rn
2), i indexes firms, and t indexes time. However, since uitz 0, nitz� Zitd so

that the distribution of nit is truncated from below at the variable truncation point, � Zitd.
The statistical error of the production frontier is assumed to be mean zero, normally

distributed with variance rv
2. Then the log-likelihood function for the ith firm at time t

takes the form:

lnLit ¼ � 1

2
lnð2pÞ þ lnðr2Þ
� �

� 1

2r2
½yit � f ðXit;Wit; b; hÞ þ Zitd	2

� ln½UðditÞ	 þ ln½Uðdit*Þ	; ð1Þ

where f(Xit, Wit; b, h) is the production frontier, b, h, d, c, and r2 are the parameters to

be estimated, dit = Zitd/(cr
2)1/2, dit*={(1� c)Zitd� c[ yit� f(Xit, Wit; b, h)]}/[c(1� c)r2]1/2,

and U(�) denotes the standard normal cumulative distribution function. Note that, under

this parameterization, c = ru
2/(ru

2 + rv
2) and r2 = ru

2 + rv
2. We use the translog specification

for the production frontier.8

In order to examine the consequences of omitting environmental production conditions,

we estimate the production frontier with and without the environmental variables. The

traditional, or ‘‘short’’ specification, which omits the Wit variables (i.e., Yit = g(Xit,

F)� uit* + vit*), may be written as:

lnðYitÞ ¼ b0
*þ

XK
k¼1

bk
*lnðXiktÞ þ

1

2

XK
k¼1

XK
j¼1

cjk* lnðXijtÞlnðXiktÞ

� uit*þ vit*; uit* ¼ Zitd*=þ nit*; ð2Þ

where b0
*, b k

*, and cjk* ( j, k = 1,. . ., K) and d* are parameters to be estimated. Output (Yit) is

rice production. The productive inputs (Xit) are land, adult family labor, adult hired labor,

child labor, and chemical fertilizer usage. Managerial variables (Zit) include the proportion

of area planted in modern rice varieties, rice cropping experience, gender, age, education

dummies, number of rice plots cultivated, number of total crops cultivated, as well as

region- and year-specific dummies. Units of measure and descriptive statistics for each

variable are provided in Table 1.

8 The presence of many zero-valued observations is troublesome. The convention in much literature is to set

ln(0) = 0. However, due to observations taking on values in the range (0,1), setting ln(0) = 0 implicitly reorders

observations with respect to that subspace. Therefore, we instead set ln(0) = ln (f/10), where f is the smallest

strictly positive observation in the sample. We tried to address the problem of zero-valued observations instead

through the use of other flexible functional forms, e.g., generalized Leontief, CES-CT-GL, and symmetric

generalized McFadden, but all failed diagnostic tests for satisfaction of regularity conditions (due to Waldman,

1982).
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As stated previously, we assume the separability of Xit, Wit, and Zit in order to conserve

degrees of freedom in estimating the ‘‘full’’ specification, Yit = f(Xit,Wit)� uit + vit, or, written

as above:

lnðYitÞ ¼ b0 þ
XK
k¼1

bk lnðXiktÞ þ
1

2

XK
k¼1

XK
j¼1

cjk lnðXijtÞlnðXiktÞ

þWith � uit þ vit; uit ¼ Zitd þ nit; ð3Þ

where h is a vector of estimable parameters, conformable withWit, including the categorical

variables soil erosivity, soil fertility, soil aptitude, pest infestation, weed density, weed

height, plant disease, topographic location dummies, and region- and year-specific dum-

mies, as well as the continuous variables plot slope, rainy days, and rainfall. Because both

rainfall measures are common to all plots in a region, they also capture some year-and

region-specific unobserved heterogeneity and should, therefore, be interpreted with care.

5. Results

Parameter estimates for both the short and full specifications are reported in Table 3

(standard errors in parentheses). The statistical superiority of the full specification is

apparent in a likelihood ratio test statistic of 217, which has a p-value of 0 against the

v2(23) distribution.9 The parameter estimates under the full specification indicate that

output is statistically significantly correlated with land, hired adult labor, and chemical

fertilizer usage. This is consistent with existing observations of these rice systems, as land

and labor are both important determinants of output.10 Adult-hired labor and chemical

fertilizer usage are substitute inputs, as evidenced by their statistically significant negative

second-order effect.

Environmental conditions clearly affect output, which is statistically significantly

higher in the lowlands and the hydromorphic fringe, where soils are heavier and proximity

to ground water improves moisture availability (relative to the uplands) during dry periods.

Output is also favorably influenced by rain spread over many days (around 90 rainy days

per year are ideal) and moderate amounts of rainfall (around 1120 mm of rain per year

appears ‘‘optimal’’). Rice output decreases significantly with above-average weed density,

high plant disease rates, and low soil fertility measures. Farmers located in the equatorial

forest regions of Côte d’Ivoire produce significantly more rice than do farmers of the other

two regions (Guinean savanna and a transition zone).

Returning to the three concerns expressed in Section 2 as to how omission of

environmental production conditions might affect inference, we first see a significant

10 There appears to be considerable variation in estimated elasticities of labor and land in these systems,

depending upon the data set and specification used (Adesina and Djato, 1997a,b; Sherlund, 1998; Dalton, 1999).

Much is ecosystem-dependent in this setting.

9 The Cobb–Douglas functional form is rejected in favor of the translog under both the full and short

specifications, with Wald test statistics of 27 and 87 and corresponding p-values of 0.028 and 0, respectively,

against the appropriate v2 distributions. Constant returns to scale is also rejected under both specifications, with a

Wald test statistic of 71 and 111 for the full and short specifications, respectively, each having a p-value of 0.
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Table 3

Stochastic production frontier estimates

Parameter Without environmental variables

estimate (std. error)

With environmental variables

estimate (std. error)

Constant 3.959 (0.646)** * * � 19.16 (1.043)** * *

Land 0.190 (0.178) 0.799 (0.150)** * *

Family labor (FLabor) 0.034 (0.145) 0.030 (0.111)

Hired labor (HLabor) 0.353 (0.095)** * * 0.072 (0.076)

Child labor (CLabor) 0.100 (0.039) * * 0.025 (0.033)

Chemical fertilizers (Chem) 0.197 (0.074)* * * 0.167 (0.056)* * *
1
2
Land2 0.068 (0.049) 0.041 (0.046)

1
2
FLabor2 0.033 (0.024) 0.014 (0.018)

1
2
HLabor2 0.027 (0.013) * * 0.015 (0.010)

1
2
CLabor2 0.016 (0.005)* * * 0.003 (0.004)

1
2
Chem2 0.043 (0.024) * 0.049 (0.022) * *

Land
 FLabor 0.057 (0.031) * 0.001 (0.029)

Land
HLabor � 0.002 (0.022) � 0.011 (0.018)

Land
CLabor � 0.008 (0.009) 0.001 (0.007)

Land
Chem � 0.027 (0.017) � 0.027 (0.014) *

FLabor
HLabor � 0.059 (0.017)** * * � 0.008 (0.015)

FLabor
CLabor � 0.012 (0.006) * � 0.007 (0.005)

Flabor
Chem 0.006 (0.010) 0.0002 (0.008)

HLabor
CLabor � 0.003 (0.006) 0.0007 (0.004)

HLabor
Chem � 0.015 (0.004)** * * � 0.009 (0.004)* * *

CLabor
Chem � 0.002 (0.004) � 0.001 (0.003)

Soil erosivity – � 0.031 (0.048)

Soil fertility – � 0.090 (0.027)** * *

Soil aptitude – 0.006 (0.026)

Plot slope – � 0.018 (0.010) *

Slope2 – 0.0005 (0.0004)

Pest infestation – � 0.083 (0.053)

Pests2 – 0.010 (0.007)

Weed density – 0.459 (0.123)** * *

Density2 – � 0.074 (0.019)** * *

Weed height – � 0.107 (0.082)

Height2 – 0.012 (0.013)

Plant disease – � 0.018 (0.032)

Disease2 – � 0.002 (0.003)

Hydromorphic fringe – 0.187 (0.070)* * *

Lowlands – 0.101 (0.043) * *

Rainy days – 0.293 (0.047)** * *

Days2 – � 0.002 (0.0002)** * *

Rainfall – 0.186 (0.040)** * *

Rainfall2 – � 0.0008 (0.0002)** * *

Year 1994 – 0.034 (0.114)

Year 1995 – � 0.156 (0.062)* * *

Transition zone – � 0.672 (0.354) *

Equatorial forest zone – 1.422 (0.255)** * *

r2 = ru
2 + rv

2 0.103 (0.007) 0.251 (0.026)

c= ru
2/(ru

2 + rv
2) 0.520 (0.046) 0.881 (0.020)

Log-likelihood � 129.79 � 21.31

* Statistically significant at the 90% confidence level.

** Statistically significant at the 95% confidence level.

*** Statistically significant at the 99% confidence level.

**** Statistically significant at the 99.9% confidence level.
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effect on the estimates of the parameters of the production frontier itself. This is somewhat

apparent in Table 3’s raw parameter estimates, but appears more readily in Table 4, which

reports descriptive statistics of mean plot-specific output elasticity estimates for the five

productive inputs and some of the environmental variables. Some key qualitative results

are similar for both specifications. Output is most responsive to land under cultivation and

chemical fertilizer usage. Adult-hired and family labor have essentially indistinguishable

output elasticities, while output is only about one-third as responsive to added child labor

as it is to adult labor. The major difference is that under the full specification, the elasticity

of rice output with respect to land is 20% higher than it is under the short specification,

whereas the elasticities with respect to adult family labor, adult-hired labor, and child labor

each fall by more than 70%. Once one controls for environmental production conditions,

output appears less responsive to variation in labor allocation and far more responsive to

changes in cultivated area. This almost surely reflects two intuitive patterns. First, output

expansion tends to be at the extensive margin, onto less fertile soils, so when one fails to

control for environmental conditions negatively correlated with land quality, one under-

states the true output responsiveness to land ceteris paribus. Second, labor application rates

increase when environmental production conditions are more favorable. Therefore, the

marginal physical product of labor in the traditional, short regression picks up part of the

environmental effects with which labor is positively correlated.

The next concern related to estimates of technical inefficiency. We use the Battese and

Coelli (1993) method to estimate the conditional expectation of plot-specific technical

inefficiency (conditional upon the composed error term, eit = vit� uit). This conditional

expectation is calculated as:

E½expf�uitg j eit	 ¼ exp �l* þ 1

2
r *

2

� �
Uðl*=r*� r*Þ

Uðl*=r*Þ ; ð4Þ

where l* =(1� c)Zitd� ceit and r*
2 = c(1� c)r2. Fig. 2 plots the empirical cumulative

distribution functions of the estimated technical efficiency scores for both specifications

Table 4

Output elasticity estimatesa

Variable Without environmental variables With environmental variables

Land 0.7902 (0.1177) 0.9481 (0.0665)

Adult family labor 0.1543 (0.1019) 0.0315 (0.0237)

Adult hired labor 0.1563 (0.0797) 0.0384 (0.0231)

Child labor 0.0514 (0.0176) 0.0138 (0.0104)

Chemical fertilizers 0.2056 (0.0654) 0.1877 (0.0467)

Soil slope – � 0.0357 (0.0365)

Pest infestation – � 0.0616 (0.0691)

Weed density – � 0.0991 (0.4212)

Weed height – � 0.0802 (0.0483)

Plant disease – � 0.1364 (0.1380)

Rainy days – � 3.2073 (9.3051)

Rainfall – � 5.4056 (3.9300)

a Mean (standard deviation) of plot-specific elasticity estimates.
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under both the stochastic parametric and the DEA methods. Descriptive statistics for these

estimates are reported in Table 5. The unambiguous reduction in estimated technical

inefficiency appears as a near first-degree stochastic dominance of the full over the short

specification’s empirical cumulative distribution function under both methods, as well as a

large increase in the mean and median of estimated technical efficiency.11 This provides

Fig. 2. Distribution functions for estimated plot-specific technical efficiencies.

11 This is more than just a location shift in the distribution functions. The Pearson product-moment rank

correlation between the estimated technical efficiency scores generated under the short and full specifications is

only 0.43 under the stochastic parametric method and 0.35 under DEA. Hence, plots are also being re-ranked

between the two specifications.
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empirical support for our claim that the omission of environmental production conditions

leads to substantial upward bias in estimates of technical inefficiency when the Wit are

asymmetrically distributed.

The third concern we raised in Section 2 concerned the effect of biased technical

inefficiency estimates on the estimated parameters of the relationship between inefficiency

and managerial characteristics. We find that omission of environmental production

conditions indeed significantly affects the estimates of the relationship between estimated

technical inefficiency and managerial characteristics and choice variables. The parameter

estimates for this relationship for both the full and short specifications are reported in

Table 5

Technical efficiency summary statistics

Stochastic production frontier DEA frontier

Without environmental

variables

With environmental

variables

Without environmental

variables

With environmental

variables

Mean 0.3595 0.7656 0.5618 0.9059

Median 0.3388 0.8871 0.5207 1.0000

Minimum 0.0798 0.0900 0.0897 0.2524

Maximum 0.7751 0.9649 1.0000 1.0000

Table 6

Sources of technical inefficiency

Parameter Without environmental variables

estimate (std. error)

With environmental variables

estimate (std. error)

Constant 0.735 (0.423) * � 2.134 (0.765)* * *

Rice variety � 0.0009 (0.0005) * * 0.003 (0.001)* * *

Experience � 0.0001 (0.013) � 0.023 (0.032)

Experience2 0.000009 (0.0008) 0.00007 (0.002)

Gender � 0.025 (0.058) 0.247 (0.190)

Age 0.004 (0.008) 0.004 (0.026)

Age2 � 0.00003 (0.00008) 0.00003 (0.0003)

Elementary education 0.066 (0.063) 0.671 (0.207)* * *

Secondary education 0.029 (0.067) 0.628 (0.274) * *

College or higher 0.114 (0.067) * 1.080 (0.223)** * *

Rice plots 0.083 (0.105) 1.012 (0.379)* * *

Plots2 � 0.036 (0.023) � 0.298 (0.096)* * *

Total crops 0.132 (0.063) * * 0.303 (0.144) * *

Crops2 � 0.021 (0.010) * * � 0.034 (0.020) *

Year 1994 0.302 (0.044)** * * 2.016 (0.283)** * *

Year 1995 0.195 (0.046)** * * 1.598 (0.257)** * *

Transition zone 0.317 (0.091)** * * � 2.026 (0.325)** * *

Equatorial forest zone � 0.425 (0.068)** * * � 3.074 (0.273)** * *

Managerial variables 255.11** * * 351.98** * *

Less year and region 25.29 * * 52.82** * *

* Statistically significant at the 90% confidence level.

** Statistically significant at the 95% confidence level.

*** Statistically significant at the 99% confidence level.

**** Statistically significant at the 99.9% confidence level.
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Table 6.12,13 The estimated relationships between the technical inefficiency parameter, uit,

and the correlates are broadly similar across both regressions, both somewhat more

intuitive and considerably more precise when this parameter is generated by the full

specification. For example, year and region dummy variables are highly significant in both

regressions. Yet, in the full specification, technical efficiency appears greatest in the wetter

equatorial zone and least in the drier savannah zone, while in the short specification,

efficiency appears significantly greater in the drier savannah zone than in the transition

zone of intermediate rainfall. This is counterintuitive and inconsistent with the mass of

previous studies of Ivorien rice production. When the technical inefficiency parameter, uit,

is generated from the full specification controlling for environmental production con-

ditions, inefficiency is lower for unschooled farm managers,14 for those who cultivate

three or more rice plots, and for those who specialize in rice production. By contrast,

technical inefficiency appears to be increasing in the proportion of area planted in modern

rice varieties—perhaps signaling smallholder unfamiliarity with how best to grow these

varieties—when farm managers diversify risk by planting multiple crops, and during 1994

and 1995, following the massive January 1994 devaluation of the local currency. When the

annual and regional dummy variables are excluded, the managerial variables are over-

whelmingly statistically significant when one has previously controlled for environmental

production conditions, with a Wald test statistic of nearly 53 and a p-value of 0 against the

v2(13) distribution. Without having controlled for environmental production conditions in

the first stage estimation, the corresponding Wald statistic falls to 25, which has a p-value

of 0.021 against the same v2(13) distribution. More careful control for environmental

production conditions not only affects the estimates of the production frontier parameters

and sharply reduces estimated technical inefficiency, it also (relatedly) improves the

precision with which one can explain apparent technical inefficiency.

6. Conclusions

This paper is motivated by a concern that the empirical work on the technical efficiency

of smallholder farmers does not always adequately control for environmental production

conditions. This may cause analysts to draw false inferences, with undesirable conse-

quences for the design and effects of the policies informed by such inferences.

We first explain why prevailing empirical methods, using either deterministic or

stochastic production frontier methods, likely yield biased and inconsistent estimates of

the parameters of production frontiers, plot-specific technical inefficiency, and the param-

eters relating estimated technical inefficiency to managerial characteristics. We demonstrate

12 The parameter estimates of Tables 3 and 6 are estimated jointly by full information maximum likelihood.

We report them separately for ease of presentation.
13 While for the sake of brevity we do not report them here, analogous results emerge when one uses DEA-

generated technical inefficiency estimates in the second stage regression.
14 This likely reflects that farming is a secondary occupation for those with formal schooling, who focus

primarily on the superior income distribution available through nonfarm employment based on education and

skills (Barrett et al., 2001). Farming gets relatively less of their attention and thus exhibits greater technical

inefficiency.
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our claim in the case of smallholder rice production in the West African nation of Côte

d’Ivoire during 1993–1995. Using detailed plot-level panel data, we show that controlling

for measurable environmental production conditions yields significantly lower estimates of

technical inefficiency, different output elasticity estimates, and more intuitive and precise

estimates of the sources of technical inefficiency. Using the technical inefficiency effects

model for panel data suggested by Battese and Coelli (1995), the median Ivorien rice plot

exhibits relatively little technical inefficiency once appropriate measures are taken to control

for environmental production conditions. However, when these controls are absent,

technical inefficiency estimates become contaminated in a predictable way: they rise

sharply. In an area where upland smallholders have been cultivating rice with similar

technologies for millennia, the technical efficiency we find once proper control is made for

environmental production conditions seems far more plausible than the widespread

inefficiency common to efficiency studies without such controls.

These results have significant policy implications since the extent of estimated technical

inefficiency prevailing in an agricultural economy matters to the determination of whether

scarce agricultural development funds are best spent to develop improved technologies or

to teach farmers how to better use existing technologies. T.W. Schultz appears to be right

when one compares Ivorien rice farmers against the estimated production frontier they

face, conditional upon their idiosyncratic realization of environmental production con-

ditions, rather than against the best-realized production frontier, which implicitly pits them

against colleagues enjoying considerably more favorable realized environmental shocks to

production.
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