

The Coolbot™ - Appropriate Cooling Technology

Temperature control is the most important factor in reducing postharvest losses

In much of the developing world, postharvest losses are as *high as 80%* and the cold-storage chain is virtually non-existent due to the high cost of equipment and spotty electricity. Because fresh produce can perish in a matter of days under ambient temperatures, temperature control alone can extend the shelf life by weeks or even months (Table 1).

- Quickly lowering produce temperature after harvest extends shelf life by reducing metabolic activity and microbial growth
- Market prices rise and fall drastically (Graph 1). Farmers who can store produce longer can take advantage of better prices.

The Coolbot™ provides inexpensive cold storage to developing-world farmers

The Coolbot™

- 1. was developed in the United States as an inexpensive way for smallscale producers to cool product on their farms
- 2. overrides the air conditioner's temperature gauge, tricking it into working harder
- 3. converts an insulated room and inexpensive, readily available window air conditioner into a coolroom
- substantially reduces the cost of a cool storage environment for horticultural produce
- makes cold storage a viable option for developing-world farmers, cooperatives and market groups

Basic Costs:

Coolbot ™	\$299	Insulated Room	\$200
Air Conditioner	\$150	Electricity	\$200*
		*subject to variations	

Benefits:

- Farmers can sell produce in the offseason when prices are higher
- Farmers are protected from erratic market prices
- Increasing cold storage possibilities will stabilize fruit and vegetable prices, enabling consumers to eat healthier all year

Next Steps:

- Work with local groups to determine the cost-benefit of the Coolbot™
 under various settings and the viability of using solar energy to power
 the system in regions that lack reliable electricity
- Identify conditions where the Coolbot™ will be most profitable

Table 1. Shelf life of horticultural products under optimum temperatures.

Product	Optimum Temp. (°C)	Shelf Life (Days)
Tomato	12.5	14
Mango	13	28
Banana	13	28
Bell Pepper	7.5	35
Cabbage	0	42
Potato	4	140
Lemon	13	180
Apple	0	245
Pungent Onion	0	260

⁻⁻Adopted from the UC Davis Postharvest Technology Center's Produce Factsheets.

Graph 1. Volumes and Prices of Cauliflower in New Delhi

The Coolbot $^{\text{TM}}$ is a small black box that is wired into a standard air conditioner.

Developed by Mark Bell, Michael Reid, Peter Shapland and Amanda Crump

Resources:

UC Davis Postharvest Technology Center I Kader, A. (2006) The Return on Investment in Postharvest Technology for Assuring Quality and Safety of Horticultural Crops I Kader, A. (2002) Postharvest Technology of Horticultural Crops. Oakland: University of California, Division of Agriculture and Natural Resources Publication, 3311, P. 535. I