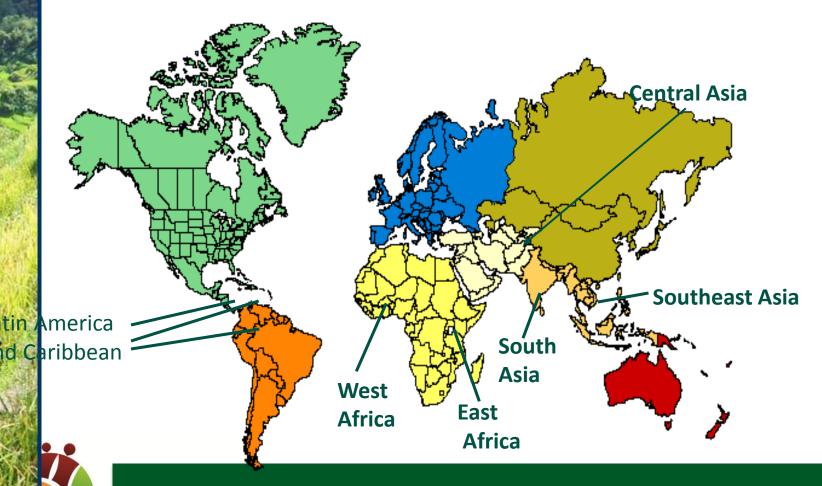


Feed the Future Food Security Innovation Labs: Collaborative Research Programs

Innovation Lab: CRP IPM

Key to Green Agriculture

R. Muniappan Director Virginia Tech



IPM CRSP Host Country Regions in 2009– 2014

6 Regions

East Africa Project

- Ethiopia: Biological control of the invasive weed *Parthenium*
- Kenya: IPM packages for tomato, passion fruit and onion
- Tanzania: IPM packages for tomato, onion and coffee
- Uganda: IPM packages for tomato, onion and coffee

Eggplant and tomato grafting in Bangladesh

Eggplant grafting in Bangladesh

- Eggplant yield ↑ 249% in Bangladesh
- Income ↑ 305% in Bangladesh
- Technology transferred from Bangladesh to Ohio
- Technology transferred to India, Nepal, Philippines, Uganda, Honduras, Ecuador, and Kenya

Farmers Grafting Tomato for Bacterial Wilt Control

Eggplant killed by SAID bacterial wilt

Farmers practicing solarization in high tunnel tomato production

Farmers practicing solarization for bacterial wilt control in tomato by covering with clear polythene sheet for 6 weeks

Development and use of Biopesticides

- Trichoderma
- NPV
- Beuaveria
- Metarhizium
- Pseudomonas
- Bacillus subtilus

Trichoderma Production and Use

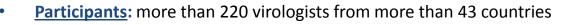
Trichoderma Production and Use in Indonesia and Bangladesh. It is being introduced to Kenya and Senegal. Will be introduced to

Uganda, Tanzania and

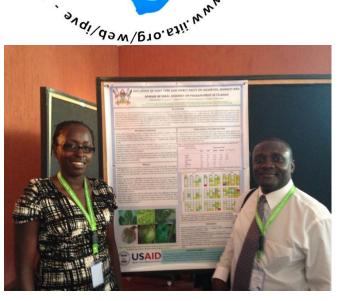
Passion fruit Virus Diseases

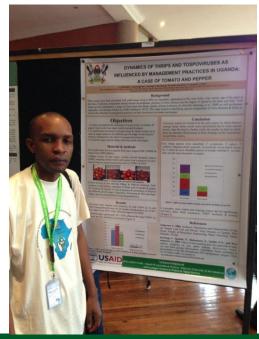
Fruit woodiness, ring spots and leaf curl and roll, mosaics and

Gemini virus control in tomato


Healthy tomato

Virus infected tomato





12th International Symposium on Plant Virus Epidemiology January 29, 2013 Arusha, Tanzania in a symposium on Plant Liture Demosium on Plant Liture Demosium 28 January - 1 February 2013 ARUSHA, TANZANIA

- **IPM CRSP Special Session**
- Partnership for strengthening capacity building development in Africa:
- Four IPM CRSP students presented posters.

Coffee Pests in East Africa

Coffee berry borer White stem borer Mealybugs Scales Scales Antestia bug Coffee wilt disease Coffee rust

IPM Packages

IPM package for vegetables delivers food security and biodiversity

Use of bio-pesticides is one of the major components of IPM. The result is a significant increase in plant health and yield, a dramatic reduction in pesticide use, improvement in biodiversity, and an increase in farmer income.

IPM plays a major role in the management of Invasive Alien Plants and especially to manage Invasive Alien Arthropods and Microbes.

www.oired.vt.edu/ipmcrsp

An IPM vegetable package is a set of technologies that can be applied to a given crop to obtain increased yield and reduce pesticide use. It includes the following elements:

Soil Preparation

Techniques to enhance the soil—such as soil solarization and the addition of growth enhancers such as neem cake, VAM, and fertilizers—provide vegetables with the nutrients they need and deter pests such as weeds and nematodes.

Seed Treatment

Seed treatments such as *Trichoderma spp.*, *Pseudomonas fluorescens* and *Bacillus subtilis* protect the seedlings from pests.

Seed Selection

Quality seeds should be chosen according to need and availability. Pest resistance, yield, marketability, and suitability to the environment are important considerations.

Seedling Selection and Grafting

All seedlings in the nursery should be closely examined for viral and other diseases, and infected seedlings should be eliminated from the planting material. Grafting for pest resistance should be done when needed.

Biological Control

Adoption of biological control is a major component of IPM. Local natural enemies such as parasitoids can significantly decrease the need for pesticides.

Traps and Biopesticides

Sticky traps, pheromone traps, and bait traps may be used for both monitoring and reducing pest populations. When these populations reach an economic threshold, biopesticides such as NPV can be used.

Supplemental Tactics

Supplemental tactics including physical management techniques, such as using stakes, nets, and planting trap crops or nectar plants can be used to reduce pest damage.

Strategic Action

Strategic action, such as irrigation and rogueing, should be taken to keep plants healthy, reduce re-infection, and discourage pests. While this step is very effective, it is often labor

Feed the Future Food Security Innovation Labs: Collaborative Research Programs

The Integrated Pest Management Collaborative Research Support Program (IPM CRSP) is managed by Virginia Tech at the International Affairs Office Building, 526 Prices Fork Road (0378), Blacksburg, VA 24061. Phone: (540) 231-6338

IPM for Tomato

- Seed or seedling treatment with *Trichoderma*, *Pseudomonas* fluorescens, and *Bacillus subtilis*
- Solarization of seed beds and greenhouses
- Use of VAM, neem cake and other organics
- Selecting virus-resistant varieties
- Grafting on resistant rootstock for bacterial wilt, Fusarium and others
- Staking and mulching
- Yellow sticky traps for thrips, leafminers etc.
- Pheromone traps for Helicoverpa and Spodoptera
- Host-free period and rogueing for control of virus diseases
- Use of Biopesticides such as neem
- Use of microbial pesticides such as NPV, Metarhizium, and

Beauveria

Invasive Species in Africa

- Tomato leaf miner *Tuta absoluta*
- Spiraling Whitefly Aleurodicus dispersus
- Nesting Whitefly *Paraleyrodes minei*
- Papaya mealybug Paracoccus marginatus
- Solenopsis mealybug Phenacoccus solenopsis
- Cassava mealybug Phenacoccus manihoti

Papaya mealybug, Paracoccus marginatus

Order: Hemiptera, Suborder: Sternorrhyncha, Family: Pseudococcidae

- Native to Mexico
- First described in 1902
- Caribbean: 1995-2000
- Pacific: 2000-2005
- Asia: 2008
- West Africa: 2009

Papaya Mealybug Damage

Acerophagus papayae, A Parasitoid Used for Papaya Mealybug Control in West Africa

Tuta absoluta in Senegal and Ethiopia

A native of South America.
Introduced to Spain in 2006.
Now it is in Senegal and Ethiopia.
it will spread to West and East Africa in next one or two years.
West Africa Regional Workshop – May 7-9, 2013 in collaboration with CORAF and USDA/APHIS
East Africa Regional Workshop – in planning stage with ASARECA and USDA/APHIS

Cassava Mealybug – Phenacoccus manihoti

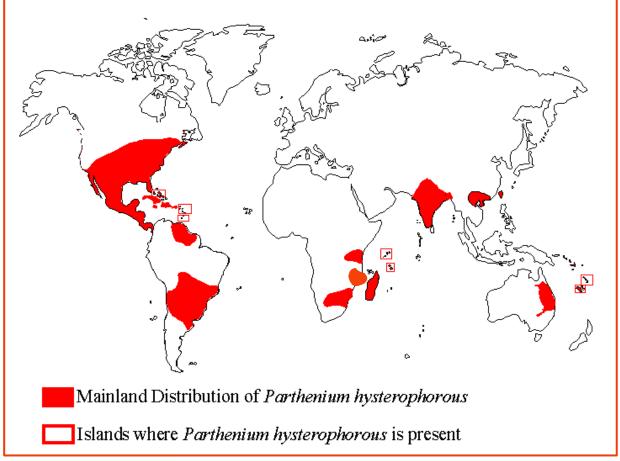
Native of South America Introduced to Congo in early 1970s Spread to Rest of Equatorial Africa Thailand – 2009 Indonesia - 2010

Parasitoid: Anagyrus lopezi

Native of Paraguay and Brazil Introduced to Africa – 1981

Thailand - 2009

Benefit of Introduction of this Parasitoid into Africa : \$200 to 500 for Each Dollar


Invasive Weed - Parthenium

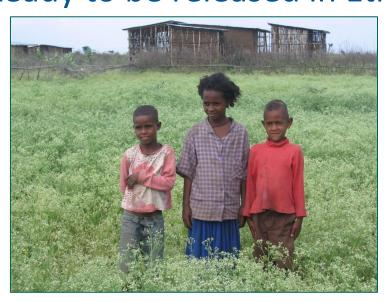
- North American/Central American native plant threatening:
- Cultivated land
- Range land
- Natural biodiversity

Worldwide distribution of Parthenium hysterophorus

Parthenium hysterophorus

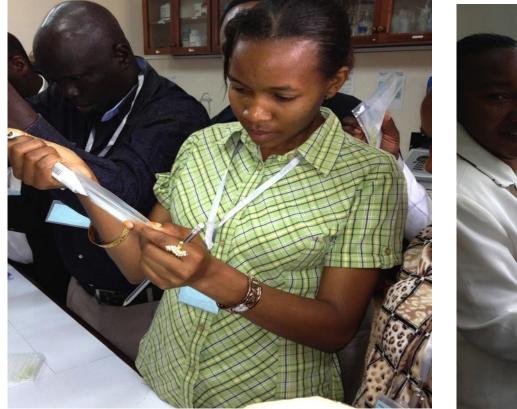
Spreading in Eastern and Southern Africa

For Biological Control of Parthenium
Built a Quarantine Facility in Ethiopia
Trained Personnel in Quarantine
Host Specificity Tests Completed
USAID Permit Received for Field Release



Zygogramma bicolorata (Coleoptera: Chrysomelidae)

Introduced to Australia in 1980
Introduced to India in 1984
Ready to be released in Ethiopia



International Conference on Parthenium organized in Kenya

Plant Disease Diagnosis Training Tanzania- Sokoine University of Agriculture, May, 2012

Ghana 2011: Tomato Disease and Insect Pest Diagnostics

- Overviews -major diseases and pests
- Bacterial diseases
 - Culture, HR, serology
- Virus diseases
 - Sap transmission, serology, PCR
- Insect pests and vectors identification
- Fungal disease identification

 Culturing, microscopy, serology
- Root knot nematode identification
- DDIS-CIMS training

ty Innolaitign opticsCallobBrative Research Priograms

Long-term training

- Ethiopia 3
- Kenya 4
- Senegal 3
- Tanzania 7
- Uganda 12

Selected Impacts of the IPM CRSP

Country and Authors	Сгор	IPM Practice(s)	Net Benefits (millions)
Uganda, Moyo et al, 2007	Peanuts	Virus resistant variety	\$33-36
Mali, Nouhoheflin, et al, 2011	Tomato	Cultural	\$21-24
Uganda, Debass, 2000	Beans and maize	Cultural	\$36-202
Bangladesh, Debass, 2000	Eggplant, cabbage	Cultural practices	\$26-29
Bangladesh, Rakshit et al, 2011	Cucurbits	Pheromone traps	\$3-6
Ecuador, Baez, 2004	Plantain	Cultural	\$59-63
Ecuador, Quishpe, 2001	Potatoes	Resistant variety	\$50
Albania, Daku, 2002	Olives	Cultural	\$39-52
Honduras, Sparger, et al, 2011	Eggplant, onion, tomato, and pepper	Cultural practices	\$17
India, Selvaraj, 2012 (preliminary analysis)	Mulberry, papaya, cassava	Papaya mealybug parasitoid release	\$500

IPM CRSP Cost: Benefit Ratio

- IPM CRSP Budget for 20 Years \$50 Million
- Benefits from IPM CRSP \$788 to 983 Millions
- Cost:Benefit

1:15 to 20

(This ratio is based on impact assessment of 10 IPM technologies implemented in 10 countries. Over 100 more technologies implemented are yet to be assessed. Assessing these may lead to a ratio of 1:150 to 200)

Thank You

INNOVATION LABS COLLABORAT IVE RESEARCH

