Publication
stcS encodes a putative P450 monoxygenase needed for the conversion of versicolorin A to sterigmatocystin in Aspergillus nidulans
Details
Author(s):
NP Keller; S Segner; D Bhatnagar; TH Adams
Type of Document:
Scholarly Article
Publisher/Journal:
Applied and Environmental Microbiology
Date of Publication:
7/21/1995
Place of Publication:
Not Available
Links
Description
Abstract: Sterigmatocystin (ST) and aflatoxin are carcinogenic end point metabolites derived from the same biochemical pathway, which is found in several Aspergillus spp. Recently, an ST gene cluster, containing approximately 25 distinct genes that are each proposed to function specifically in ST biosynthesis, has been identified in Aspergillus nidulans. Each of these structural genes is named stc (sterigmatocystin) followed by a consecutive letter of the alphabet. We have previously described stcU (formerly verA) as encoding a keto-reductase required for the conversion of versicolorin A to ST. We now describe a second A. nidulans gene, stcS (formerly verB), that is located within 2 kb of stcU in the ST gene cluster. An stcS-disrupted strain of A. nidulans, TSS17, was unable to produce ST and converted ST/aflatoxin precursors to versicolorin A rather than ST, indicating that stcS functions at the same point in the pathway as stcU. Genomic sequence analysis of stcS shows that it encodes a cytochrome P-450 monooxygenase and constitutes a novel P-450 family, CYP59. Assuming that StcU activity mimics that of similar P-450s, it is likely that StcU catalyzes one of the proposed oxidation steps necessary to convert versicolorin A to ST. These results constitute the first genetic proof that the conversion of versicolorin A to ST requires more than one enzymatic activity.